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Abstract—The development of space communications neces-

sitates that microwave devices used in satellite systems have

good temperature and vibration characteristics, low weight and

size. High power L-band dielectric resonator (DR) microwave

filters which can solve these problems have been developed and
are reported herein. The electromagnetic and electrical param-
eters of different microwave dielectric resonator structures have
been computed by means of the two dimensional and three di-

mensional finite element method (FEM), which can be applied

both for free and forced oscillation systems. In this paper, we
propose, design and evaluate the response of a new type of filter
using rectangular dielectric resonators excited in their TM1 lo
mode.

INTRODUCTION

H IGH power band pass filters are required in mobile

communications systems operating in L frequency

band. At these frequencies, the thin-invar empty cavities

filters excited in their TE1 ~, modes have very large di-

mensions (@ = 150 mm, L = 200 mm) and cannot realize

the low mass required in space specifications.

The use of dielectric ma~terials which combine high Q,

good thermal stability and high dielectric constant permit

reducing the size and the weight of the microwave de-

vices.

Some solutions have been already proposed to realize

L-band dielectric resonator filter: in particular dual mode

dielectric resonator longitudinal (Fig. 1) [1], [2] or planar

(Fig. 2) [3], [4] structures. Another solution consists of

using half (Fig. 3) [5] or quarter (Fig. 4) [5], [6] dielectric

resonators filters excited on their TEOI ~ modes. Unfortu-

nately dual mode dielectric resonator filters are not ca-

pable of handling higher power levels. The last two struc-

tures allow obtaining a good dissipation of temperature

but the unloaded Qu factor of each resonator is low.

To solve the problem of both filter size and temperature

dissipation, we propose to use the TMOIO cylindrical mode

[7] or TMl lo rectangular mode DR inserted into a metallic

cylindrical enclosure, in which the DR axis and that of

the metallic waveguide are perpendicular (Fig. 5).
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Fig, 1, Dual mode dlelectnc resonator filter (Iongltudinal)
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Fig. 3. 5th degree elhptic filter with TE013 Image resonator half disc,

The analysis of these types of filters necessitates use of

a 3-D free or forced oscillations finite element method

[8], [9] having first order mixed elements. In effect, this

method permits obtaining:

resonant frequency Fo;

magnetic field lines;

0018-9480/92$03 .00 @ 1992 IEEE



MADRANGEAS et al.: ANALYSIS OF L-BAND DIELECTRIC RESONATOR MICROWAVE FILTERS 121

silver-metalized

ceramic substrate coup[ing~oop
tuning , _ I

scr

\
metal

~
:.

homing dielectric
r..n” .,..

,,,pd prObe
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Fig. 5. Configuration ofa6poles short circuited DR filter.

electric field lines;

stored energies;

unloaded Qu factor;

coupling coefficients between two adjacent DR;

coupling of dielectric resonators with the external ports.

MIXED ELEMENTS

The rigorous evaluation of electromagnetic and electri-

cal parameters of a shielded dielectric resonator cannot be

done by a straightforward analytic method, but only by a

numerical solution implemented on a computer, usually a

large mainframe computer.

Considering electric field ~ and magnetic field F as dis-

tribution vectors in Maxwell’s equations [10], and solving

these latter, we obtain the general propagation equation

(1) available to compute any free and forced oscillation

microwave ‘problems:

v

K volume of the structure

Sk: surface of the access plane (k = 1, .00 , n)

u: angular frequency of the fields.

We denote {V;} as the rotational operator applied to a

function.

*For magnetic ~ field formulation:

; = & test function normal to magnetic surfaces ,

p=e, (permittivity)

q=Pr (permeability)

U=60

J~L = J~s~: magnetic surface currents at the access
planes Sk. ~

*For electric E field formulation:

$=~

$=&: test function normal to electric surfaces

P=Pr

q=er

Z’4=J.L(J

+-+
JsL = J,Sk: electric surface currents at the access

planes Sk.

Equation (1), which describes the electromagnetic be-

havior of the structure, is discretized and solved using the

finite element program library Modulef [1 1].

The method consists of dividing the studied structure

into triangular (2-R~or tetrahedral’ (3-D) su~domains. The

unknown function ~ and the test function @ are approxi-

mated by first order mixed elements [12], [13]:

where

N is the number of modes

;i : basis vectorial functions
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Fig. 6. Rectangular DR into metallic cylindrical enclosures.

TABLE I

RESONANT FREQUENCIESOF THE FIRST MODES FORTHE RESONATOR OF FIG. 6 AND THE COMPUTING TIME

Lagrange Elements Mixed Elements

H Formulation H Formulation

Order of the polynomial 2 1

Number of the points 75 75

Number of the nodes 405 660

Frequency Computing Frequency Computing

(GHz) Mode Time (GHz) Mode Time

1.4444 spurious 1.4577 TMI,O

1.4642 TM,,. 2.6493 hybrid

In the 1.4 GHz
1.6542

to 2 GHz band
1.7424
1.9206
1.9419
1.9573

.
spurious
spurious
spurious
spurious
spurious

38 nm
In the 1.4 GHz

to 3 GHz band

2.6589

2.7264
2.7334

h~brid
hybrid
hybrid

llmn

ii: comple~ numbers which define the vectorial func-

tion J. These numbers are not function values

but weighted circulations of the function along

the edges.

In the case where the polynomial functions are of de-

gree k = 1, the degrees of freedom +i associated with the

ith edge defined by Nedelec [13] are given by

(3)

where

+.
7-. unit tangential vector at the edge

Ni: basis functions, for each node i the value of Ni is

1 at the node i, and O at the other ones

~: unknown function which is approximated by La-

grange elements in the expression (3):

~ = ~ $iNi.

To prove the advantages or this new formulation over

the old one (which used-Lagrange polynomials), we have

evaluated the resonant frequencies of the first modes for

a rectangular DR inserted into a metallic cylindrical en-

closure (Fig. 6).

In Table I we can show that the mixed elements present

many advantages; in particular they permit:

elimination of spurious responses;

reduction of computing time.

ELECTROMAGNETIC PARAMETERS

The finite element method, using mixed elements, has

been applied to the evaluation of the resonant frequency

Fo, QU factor and electric and magnetic field of parallel-

epipeds and cylindrical short-circuited DR. As an example

of the results obtained with 3-D FEM, we present respec-

tively in Figs. 7 and 8, the magnetic field of TMOIO cylin-

drical DR mode and TM1,0 rectangular DR mode. In the

Fig. 9, we give the variation of the QU factor as a function

of height of the DR; for the filter design the height is taken

equal to 45 mm which is the best compromise to obtain a

small size and a large unloaded QU factor.

We conclude that a good realization of a 1.6 GHz mi-

crowave DR filter, will result from using the following

dimensions:
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Fig. 7. Magnetic field lines of TMO,Ocylindrical DR mode.
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Fig. 8. Magnetic field lines of TM1lOrectangular DR mode,

Cylindrical DR Rectangular DR

diameter of DR dimensions of DR

= 12 mm = (10.5 X 10.5 X 45) mm

height of DR permittivity of DR e,

= 45 mm = 36.5

permittivity of DR e, diameter of cavity

= 36.5 = 44 mm

diameter of cavity height of cavity

= 44 mm = 75 mm

height of cavity

= 75 mm

ELECTRICAL PARAMETERS

To reduce size and weight of microwave filters it is nec-

essary to study new coupling structures. The theoretical

and experimental coupling coefficients between two rect-

angular DR as a function of the inter-stages distance are

shown in Fig. 10. Using the symmetry of the structure,

the coupling coefficient k [14] is accurately calculated

from the following relation:

(4)

in which foeand fomare the resonant frequencies corre-

sponding respectively to even and odd modes.

MICROWAVE FILTERS
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Fig. 12. Structure with its metallic screw configuration of the right angle.

But this configuration does not permit obtaining small

coupling coefficient together with small size of micro-

wave filters. “So a new structure in which DR and wave-

guide axis are perpendicular is considered. This permits

obtaining small coupling coefficients for small distances

between the DR. This configuration can be exploited to

reduce size and weight of DR structures, in particular by

considering:

the inter-resonator coupling as a function as the angle

6 between two DR;

the inter-resonator coupling between two orthogonal DR

with metallic screw;

the inter-resonator coupling with a rectangular iris be-

tween them.

Let it be noted that in these cases we cannot use the

symmetry of the structure for the coupling coefficient

computation and so it is necessary to take into account the

whole structure.
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Fig. 13. Inter-resonators coupling between two orthogonal DR with me-
tallic screw.
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Fig. 14. Inter-resonators coupling with a rectangular iris between them.
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TABLE II

PARAMETERS OF THE BAND PASS ELLIPTIC FILTER

Center frequency 1.50 GHz

Bandwidth 25 MHz

Normalized input and

output impedance 1.142

Center frequency:
transmission losses 0.3 dB
reflexion losses >21 dB

Normalized coupling o 0.9026 0 –0.03 o 0
matrix 0.9026 0 0.6506 0 o’ 0

0 0.6506 0 (35918 O –0.03
–0.03 o 0.5918 0 0.6506 0

0 0 0 0.6506 0 0.9026

0 0 -0.03 0 0.9026 0

The coupling coefficient k is also given by the follow-

ing relation: -

k = FO1 – Fol

FO “

For a mounted pair of DR the transmission coefficient

as a function of frequency will show two maximum, re-

spectively at Fol and F02 and one minimum at F. of the

resonator overcoupled.

In Fig. 11, we give comparison between calculated and

measured coupling coefficients versus the angle O for an

interstage distance d equal to 5 mm. With such a config-

uration we can have a small coupling coefficient value for

a small distance between two DR according to angle 6.

When O = 90°, the coupling coefficient is equal to zero.

However, two orthogonal DR can be coupled by using a

metallic tuning screw (Fig. 12) which destroys the or-

thogonality between the TM,,0 mode excited in the two

resonators. For example presented here we can note that

when the length of the metallic screw in the enclosure is

larger than 10 mm (Fig. 13), an inter-resonator-coupling

appears.

We can also note that this configuration permits obtain-

ing negative coupling coefficient value and this result will

be very useful in realizing elliptic band-pass filter func-

tions [15], [3].

Another solution to reduce size of DR structures con-

sists of using an iris (Fig. 14), but added metallic com-

ponents increase losses in microwave filter responses.

The theoretical results obtained present a good agree-

ment with the experiments ones, and can lead to the re-

alization of compact high power band-pass elliptic filters

which use TM I 10parallelepipeds DR modes.

ELLIPTIC FILTER

Filter Performances

An experimental 6 poles elliptic prototype has been de-

signed and constructed with rectangular DR. Parameters

of the filter are given in Table II. A schematic represen-

tation of the coupling matrix coefficients is shown in Fig.

15. The coupling coefficients have positive values.

Fig. 15. Scheme representation of the coupling matrix coefficients.
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Fig. 16. Frequency responses of the experimental filter.

The mounting of the dielectric resonators inside the

cavities is based up on the differential expansion phenom-

ena between the aluminum housing and the dielectric res-

onators. The metallic cavity is heated to a high tempera-

ture to provide a sufficient increase in diameter of the

cavity to put the dielectric resonator inside it by means of

a particular mounting tool.

Fig. 16 shows the response of the 25 MHz bandwidth

experimental filter. The in-band insertion losses are ap-

proximately equal to 0.3 dB and the return loss measured
is 25 dB. The unloaded quality factor is equal to 6500.

Fig. 17 shows the position of the nearest spurious modes.
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Thermal Design

Thermal interfaces:

dissipated power: P~

input power: 60 W

electrical losses: 0.4 dB.

So P~ = 5.3 W; for this kind of filter, the finite element

method has permit to know the following dissipated power

distribution:

60% in the dielectric resonator

40% in the internal cavity.

Reference temperature is taken on the equipment

mounting feet. Thermal analysis is performed considering

conductive and radiative coupling with the payload envi-

ronment.

Main objectives for the thermal design are

to minimize temperature excursion of filters in the de-

signing cases (cold case low RF level/hot case high

RF level);

to minimize thermal gradients along filters;

to minimize hot spot temperatures.
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The thermal analysis performed with specific software

on electrical enclosure, gives the results of the Fig. 18,

for a reference temperature of + 50”C.

CONCLUSION

In this paper, we have applied a new 3-D finite element

formulation to compute electromagnetic and electrical pa-

rameters of microwave DR devices.

The comparison carried out between theoretical and ex-

perimental results shows the use fulness of this formula-

tion.

More accurate results should be obtained by using sec-

ond order mixed elements.

Theoretical and experimental results obtained are ap-

plied to realize an L-band dielectric resonator elliptic fil-

ter, which can be integrated in future satellite microwave

devices.
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